👤

MRU:
Un auto y una moto viajan por la ruta hacia el mismo destino. Sabiendo que el auto lleva una velocidad de 80 Km/hs y la moto de 85 Km/hs.

Calcular cuántos minutos demorará la moto en alcanzar al auto si esta se encontraba 1500m detrás del auto

Aplicar la formula y como lo hiciste paso a paso.


Respuesta :

[tex] \underline{ \huge{ \bold{Movimiento \: rectilíneo \: uniforme}}}[/tex]

Para resolver este problema necesitaremos aplicar la fórmula del tiempo de alcance pero primero veamos nuestro datos.

Datos :

  • [tex] \boxed{\bold{V1 = 80km/h}}[/tex]
  • [tex] \boxed{ \bold{V2 = 85km/h}}[/tex]
  • [tex] \boxed{ \bold{d = 1500m = 1,5km}}[/tex]

Donde :

  • [tex] \boxed{ \bold{V1 : Es \: la \: primera \: velocidad}}[/tex]
  • [tex] \boxed{ \bold{V2 : La \: segunda \: velocidad}}[/tex]
  • [tex] \boxed{ \bold{d : La \: distancia}}[/tex]

Bueno ahora que tenemos los datos identificados sustituyamoslo en la fórmula y resolvamos.

La fórmula del tiempo de alcance :

[tex] \boxed{ \bold{t(a) = \frac{d}{V2 - V1} }}[/tex]

¡Sustituyamos los datos!

[tex] \boxed{ \bold{t(a) = \frac{1.5}{85 - 80} }}[/tex]

→ Restemos los denominadores

[tex] \boxed{ \bold{t(a) = \frac{1.5}{5} }}[/tex]

→ Dividimos

[tex] \boxed{ \bold{t(a) = 0.3h}}[/tex]

El resultado que nos dió es 0.3h (h) quiere decir horas y una hora tiene 60 minutos así que multipliquemos 0,3 por 60

[tex] \boxed{ \bold{t(a) = 0.3 \times (60 \: minutos)}}[/tex]

[tex] \boxed{ \bold{t(a) = 18}}[/tex]

R/ La moto demorará 18 minutos en alcanzar el auto

Espero haberte ayudado ¡Saludos!

Respuesta:

ayuda por favor con este ejercicio por el borde de un techo sale rodando una pelota la cual cae al suelo en un punto situado 4 metros del pie de la casa si tiene una altura dedel metros que velocidad llevaba la esfera al salir